燃气低氮锅炉,全预混模块锅炉, 大气直燃模块锅炉_2018年新型 2018年新型大气直燃模块锅炉
首页 免费注册 找供应商 找产品 找商机
燃气低氮锅炉,全预混模块锅炉, 大气直燃模块锅炉_2018年新型 2018年新型大气直燃模块锅炉
渭南市2018年新型大气直燃模块锅炉厂家
渭南市2018年新型大气直燃模块锅炉厂家燃气低氮锅炉,全预混模块锅炉, 大气直燃模块锅炉_2018年新型 2018年新型大气直燃模块锅炉
2018年新型大气直燃模块锅炉燃气低氮锅炉,全预混模块锅炉, 大气直燃模块锅炉_2018年新型 2018年新型大气直燃模块锅炉

燃气低氮锅炉,全预混模块锅炉, 大气直燃模块锅炉_2018年新型 2018年新型大气直燃模块锅炉

¥20,000.00 卖方承担运费
渭南市

陕西德力能源科技有限公司

普通会员
第  14  年
产品详情(渭南市2018年新型大气直燃模块锅炉厂家)
品牌: 其他
型号: 0.-1吨
产品别名: 全预混模块锅炉
适用行业: 工业
关键词:渭南市2018年新型大气直燃模块锅炉厂家

锅炉普遍存在的问题有哪些,是否可以解决

随着科技的不断发展,很多企业家为了减少成本,他们生产出来的机器机械是存在很多的质量问题的,还有一些不可避免的实质性的问题都需要我们后期的维修服务和企业设施的不断完善和改造,但是某些机器存在的问题不是所有的企业都能完成,有需要了解的客户可以通过我们陕西智沐环境技术有限公司了解。

现在我给大家分享一些生活中锅炉的一些普遍问题,内容如下几点:

(1) 高温腐蚀

近期高温腐蚀存在加重与腐蚀减薄加速的趋势。一般配旋流燃烧器锅炉腐蚀程度较严重。

腐蚀减薄的区域有:旋流燃烧器锅炉一般发生在燃烧器区域(包括OFA风喷嘴区)二侧水冷壁,燃烧器下部及冷灰斗区域,个别高温腐蚀很严重的前后墙也存在腐蚀;旋流燃烧器前墙布置的锅炉,高温腐蚀发生在燃烧器区域(包括OFA风喷嘴区)的后墙及侧墙的炉后部分水冷壁,高温腐蚀与水冷壁横向裂纹分布高度区域重合;四角切圆燃烧的锅炉一般发生在上层燃烧器至SOFA风喷嘴区域,个别炉型如上锅产超临界600MW,在下层燃烧器下部存在腐蚀。

前几年高温腐蚀减薄的主要方式是腐蚀结合吹灰器吹损减薄,减薄快的一年左右达到更换的程度;近年出现单纯腐蚀导致很快减薄,减薄壁厚一年在2mm左右;个别锅炉出现了较快的垢下腐蚀,腐蚀速率也达到一年2mm左右。

高温腐蚀加重的背景有:

锅炉低氮燃烧器改造。改造时过于强调煤粉分级燃烧;偏置风设置不合理;生成的NOx浓度偏高,靠减少主燃烧器区二次风控制生成NOx浓度;改造后再热汽温偏低,依靠减少主燃烧器区二次风提高再热汽温;导致水冷壁区域烟气还原性气氛过强。锅炉低氮燃烧器采用很低NOx浓度的燃烧控制方式。如旋流燃烧器低氮燃烧器效果较差,典型的是哈锅产超临界锅炉配套的LNASB型低氮燃烧器,是国外早期的低氮燃烧器,在未进行改造时不能满足旧标准的要求,为满足要求减少主燃烧器区域二次风;上锅超超临界锅炉,其燃烧器低氮效果很好,燃烧挥发分较高的烟煤时,一般生成的NOx浓度可以维持在200mg/m3左右,部分电厂将NOx浓度控制在150 mg/m3左右,引起较严重地高温腐蚀。掺烧高硫煤。在新环保标准实施后,锅炉普遍采取低氮燃烧方式时,掺烧硫分较高的燃煤,掺烧的高硫煤硫分在2~3%;部分电厂将石子煤掺配到钢球磨内燃烧,石子煤发热量不足1000kcal/kg,硫含量在30%左右,含煤粉比例很低,掺烧后产生负效益;掺烧高硫且灰熔点低的燃煤,导致炉膛存在结焦,虽然没有密实焦块,但结焦面积大,形成较严重地垢下腐蚀,水冷壁较快地减薄,一年内必须大面积换管。虽然锅炉燃煤的平均硫分控制在较低水平,但采用高硫煤集中加仓,掺烧比例在2仓以上;某旋流燃烧的锅炉,在掺烧高硫煤一年左右,发现OFA燃烧器区域水冷壁腐蚀减薄2mm左右,导致大面积换管。

高温腐蚀主要表现形式为硫腐蚀,主要特征是水冷壁区域烟气还原性很强,抽炉墙处烟气测试CO浓度表面,腐蚀严重程度与水冷壁处烟气CO浓度呈很强地正相关关系;腐蚀减薄速率较快的区域,烟气CO浓度都在20000ppm以上,浓度越高腐蚀减薄速率越快;烟气CO浓度在10000ppm以下的基本不发生高温腐蚀。

高温腐蚀与燃煤硫分也呈正相关关系,燃煤硫分高的高温腐蚀也强;燃煤硫分高于1.2%时,目前燃烧方式下,所有锅炉都会发生较严重地高温腐蚀;燃煤硫分低于0.6%,基本都不会发生高温腐蚀;0.8%以下时一般不会发生高温腐蚀,1.0%以下高温腐蚀一般并不严重,需排除掺烧高硫煤,但掺烧并不均匀的;如果低氮燃烧系统效果不好,只能靠减少主燃烧器区域二次风的高温腐蚀也较严重;在1.0~1.2%时,只有低氮燃烧系统效果较好的、且主燃烧器区域二次风合适时,


(2) 内壁氧化皮大面积脱落

目前在各种参数的大容量电站锅炉中都有发生,蒸汽参数覆盖超高压至超超临界参数。发生内壁氧化皮大面积脱落的高温受热面主要包括高温过热器、后屏过热器(屏式过热器)、高温再热器;个别炉型也出现低再、屏再受热面内也存在较厚的内壁氧化皮。

内壁氧化皮大面积脱落与氧化皮厚度、氧化皮与母材的结合状态、运行中壁温变化幅度及变化速率等相关。

其中,氧化皮厚度是衡量内壁氧化皮是否易于大面积脱落的主要依据;厚度易测试判断,较厚时脱落的内壁氧化皮刚度大,不易碎裂,呈大块状剥落,引起换热管堵塞的几率大;但氧化皮厚度与是否存在大面积脱落并不是对应关系,相同的换热管材料,有的锅炉内壁氧化皮达到0.3~0.4mm,仍未发生大面积脱落,有的在0.2mm以上就发生大面积脱落。

内壁氧化皮与母材的结合状态对其大面积脱落影响更大,结合状态不好时,内壁氧化皮容易出现大面积脱落。厚度和内壁氧化皮与母材结合状态呈一定地正相关性,一般来说厚度越厚,其与母材的结合状态会较差;内壁氧化皮与母材的结合状态与其他很多因素有关,如内壁氧化皮生成速率,一般来说,生成速率越快,与母材的结合状态会越差,壁温越高、内壁氧化皮生成速率越快,其与母材的结合状态较差;与反应时能否在内侧形成一层致密的内壁氧化皮有关,如果内层不能形成致密的氧化层,结合状态较差;与反应时环境有关,如果氧密度较高,导致Cr形成挥发性分子流失,就无法在内侧形成致密性的氧化膜,导致内侧出现气孔等;结合状态还与母材的组织有关。内壁氧化皮与母材结合状态除受生成因素影响外,还与运行过程结合状态受损有关,在锅炉启停过程中出现大幅度瞬时温度变化时,会使得内壁氧化皮与母材结合状态出现破坏,瞬时温度变化幅度越大、速率越快,则氧化皮与母材的结合状态破坏越严重,严重时直接大面积脱落;内壁氧化皮与母材结合状态损坏有:氧化皮裂纹、氧化皮起皮、氧化皮翘起以及剩余孤块氧化皮等。

江苏电厂出现多个电厂加氧控制不好,导致内壁氧化皮与母材结合状态较差,引起内壁氧化皮大面积脱落。

内壁氧化皮大面积脱落的主要因素是启停过程出现瞬时大幅度的壁温变化。启动过程出现升温升压不匹配,在启动过程中蒸汽流量很低时投减温水控制汽温,减温水调门的严密性较差,导致减温器出口汽温存在较大幅度地瞬时降温,严重时减温器出口汽温降低到饱和温度,出现较严重地蒸汽带水。如某电厂亚临界机组投减温水时,一级减温器安装在分隔屏进口,启动时开始投减温水导致后屏过热器出口壁温发生70~80℃的瞬间温降。在启动过程中还存在换热管下弯部积水较多,启动升温升压较快时,部分下弯头内积水不能及时蒸干,导致积水在换热管内波动,导致壁温较大幅度地波动;在启动过程中,出现机组缺陷,锅炉点火等待缺陷处理结束,导致汽温偏高,被迫投用减温水控制汽温。

在停炉过程中主要是机组滑停时,滑停蒸汽过低,停机时靠大量喷减温水控制汽温,锅炉热负荷不稳定时会导致较大地汽温波动;严重时停机前减温水量仍较大,停机时存在很大幅度地壁温突然恢复回升。停机时其他引起壁温大幅度波动的有:停机前烧空粉仓或原煤仓时,煤位很低时会出现搭桥或自流状态,进入炉膛的煤量波动较大,使得炉膛热负荷大幅度地波动,使得换热管壁温大幅度波动,减温水流量快速变化,特别对于辐射吸热量较大的外圈第1根管(不锈钢材料)影响较大;停炉时不及时停运风机,造成较长时间地通风冷却;停炉后闷炉时间短,采用通风快速冷却方式等。

对于内壁氧化皮大面积脱落,材料也存在较大地影响,如不锈钢管由于膨胀系数与氧化皮相差较大,较容易出现内壁氧化皮大面积脱落。不锈钢材料对内壁氧化皮脱落的影响有二个方面,虽然不锈钢换热管内壁氧化皮大面积脱落的案例较多,但内壁氧化皮大面积脱落导致堵塞爆管的案例较少:一是不锈钢内壁氧化皮容易出现大面积脱落,导致内部氧化皮大面积脱落的几率增加;内壁氧化皮厚度不存在很厚的状态;内壁氧化皮结合状态的破坏较彻底,脱落后处理较彻底,可以采用机械方式清除;堆积比较容易监测。

(3) 冷灰斗对角弯头处磨损

对于采用螺旋水冷壁的直流锅炉,存在冷灰斗对角磨损问题。磨损发生在水冷壁管顺前后墙斜坡滑落在接近角部时水冷壁管倾斜角度变大,大斜角水冷壁管在落渣口弯曲区产生很严重地磨损。

原因是由于掉落在冷灰斗区域的灰渣顺水冷壁管间沟槽滑落,在大斜角水冷壁管区域会产生较大的加速,速度快的灰渣对管子的磨损加大,一般是按灰渣滑动速率的3次方增加。在落渣口弯曲以及与侧墙交界处,灰渣产生变向时,会对水冷壁管产生严重地磨损。严重地一个小修期可以磨损使得水冷壁泄漏。

灰渣对角磨损的特点是开始磨损后,磨损呈现加速特性。许多锅炉在前几年检查磨损不严重,发现磨损后,下次检查时磨损就非常严重。高速的灰渣磨损很强,一般防磨材料难以消除灰渣磨损,防磨喷涂对于灰渣磨损的防护作用不明显。

炉膛横截面积越大,冷灰斗对角磨损情况越严重。因此塔式锅炉安装晚,但冷灰斗磨损问题暴露;东锅产1000MW级锅炉在运行不到2年时也发现了冷灰斗磨损问题。

(4) 后屏过热器壁温偏高

近几年,江苏电厂后屏过热器(屏式过热器)出口汽温偏高问题较普遍。很多电厂后屏出口汽温与高过出口汽温相差在40℃以内,部分亚临界锅炉后屏出口汽温经常达到525℃以上;部分超临界锅炉后屏出口汽温有时达到535 ℃以上;部分超超临界锅炉后屏汽温达到565 ℃以上。调温时二级(三级)减温水开度较大。

由于后屏过热器是以辐射吸热为主的受热面,单位面积吸热量较大,壁温与出口汽温之间的差值较大,换热管间壁温偏差较大;目前制造厂一般不给出受热面出口汽温控制数据,电厂按出口壁温控制受热面出口汽温,在壁温测点较少或壁温代表性较差时,会出现汽温偏高,实际壁温很高的状况。如某电厂660MW超超临界锅炉,壁温测点较少,运行初期运行反映后屏过热器从不超温,现场观察壁温值都低于汽温值;后在方天要求下,在壁温相对较高的受热面加壁温测点,发现增加的壁温测点壁温全部超过制造厂给定值;另一电厂的大屏,38个壁温测点基本都不超过汽温。

某厂东锅产1000MW锅炉,过热器减温水调门基本开足,大屏出口汽温有时超过570℃,其壁温超限的次数、时间及超温幅度都大于高过。

目前燃煤供应市场较好,锅炉燃烧的高发热量、高挥发分煤种比例增加,导致燃烧火焰中心偏低,炉膛出口烟温偏低,高温过热器吸热明显减少,导致高过进口汽温偏高,在投用二级减温水的状况下,导致后屏出口汽温偏高。

后屏出口汽温偏高的危害较大。导致内壁氧化皮生成速率加快,氧化皮与母材的结合状态变差。在锅炉启停过程中,后屏壁温波动都会大于高过与高再,如果内壁氧化皮与母材结合状态破坏较严重时,内壁氧化皮出现大面积脱落的几率较大。由于后屏过热器属于辐射吸热为主,一旦内壁氧化皮大面积脱落堵塞,很快出现超温爆管。

壁温测点代表性不好主要表现在:测点较少,无法全面了解换热面的壁温分布状况,无法监测较多的壁温高的换热管;壁温布置不合理,未在壁温高的区域集中布置,监测的效率较差;壁温安装方法不正确,大部分采用测量块固定壁温测点,但未对测量块进行单独保温,引起较大的测量误差,使显示壁温低于实际炉外汽温;壁温报警定值不科学,盲目按制造厂推荐数据,未考虑换热管材的实际应用性能和抗蒸汽氧化性能;个别制造厂未明确给出受热面的壁温控制范围, 电厂按受热面强度计算的壁温进行控制;个别电厂水冷壁壁温分布没有差别,明显不符合实际壁温分布;壁温测点与实际位置不对应,甚至运行无法了解壁温测点的具体位置。

(5)吹灰器吹损

锅炉受热面被吹灰器吹损情况较多,吹损部位有水冷壁、包覆以及低温过热器、低温再热器与省煤器,吹损原因有吹灰安装角度不正,引起蒸汽斜射;吹灰驱动轴销磨损、行程开关卡涩引起定点较长时间吹;以及提升阀摩擦卡涩,提升阀提前开启或归位后延迟关闭,导致近墙处换热管吹损;还有吹灰蒸汽压力控制过高,蒸汽射流吹损能力强;吹灰时疏水不充分,吹灰蒸汽带水使得吹损增强,如炉膛吹灰由于管路长、吹灰行走轨迹呈弧线型,增加了吹损区;换热管防磨措施不完善,存在未加防磨护瓦、护瓦间存在间隙等缺陷;吹灰运行管理不严格,没有严格执行检查制度,个别吹灰器卡涩时不能及时处理,导致受热面严重吹损。当水冷壁存在高温腐蚀时,腐蚀区域吹灰会导致水冷壁减薄速率显著加快,在较短的时间内引起水冷壁泄漏。在炉膛水冷壁或低温再热器吹损泄漏后会导致上部换热管过热泄漏,扩大事故损失。

另一种普遍的吹灰器吹损受热面为吹损悬吊管处内部换热管,形成的吹损为悬挂吊耳处的管壁,一般吹损可达内6排管圈,其中第23排管圈吹损比较严重。吹损一般发生在尾部烟道的低过与低再受热面悬吊管。

吹灰器事故还表现在吹灰管折断,大部分折断的原因为外套筒内壁吹损,部位在吹灰器停用时内套管出口处的外套筒。部分电厂还发生过外套筒不等壁厚的焊缝处。一般防治方法为定期对外套筒进行定点壁厚测量。

(6) 空预器NH4HSO4越界沉积

锅炉空预器堵塞现象比较普遍,锅炉经过烟气脱硝改造后空预器堵塞现象更趋严重。脱硝系统催化剂在将烟气中NOx还原为N2时,也会将烟气中的SO2氧化为SO3,大大地提高烟气中的SO3 浓度,与SCR出口未完全反应的NH3反应,生成NH4HSO4NH4HSO4150~230℃时呈液态,有较强的黏附性,与烟气中的飞灰粘黏,形成坚固的沉积物,很难被吹灰蒸汽吹走;当NH4HSO4浓度较高时,NH4HSO4析出沉积的温度升高,有可能出现越界沉积现象,一旦出现越界沉积,沉积物不可能由吹灰清除,导致空预器出现严重堵塞。当SCR催化剂活性下降,运行仍保持较高的脱硝效率,导致SCR出口NH3率高,烟气中NH4HSO4浓度偏高,导致NH4HSO4越界沉积,引起严重堵塞。锅炉改造后排烟温

度偏低、在低温段结酸露,与积灰混合形成板结,再与NH4HSO4混合形成黏团积灰导致严重堵塞。

目前电厂空预器换热元件低温段高度根据满负荷壁温分布选择,而长期运行在较低负荷,特别是冬天低负荷运行,换热元件壁温分布明显低于满负荷状况,NH4HSO4容易产生越界沉积的现象;低负荷时,SCR进口烟温偏低,催化剂活性下降,保持相同的或更高的脱硝效率时,会导致NH3:NOx摩尔比增大,NH3率升高;氨率表监测不准确,难以及时调节SCR运行工况,引起SCR氨率有时偏高。 NH4HSO4在空预器沉积后,如果不能及时清除,会与烟气中飞灰粒子粘黏,形成坚固的沉积物。NH4HSO4在空预器沉积的特点是,空预器一旦出现NH4HSO4越界沉积,形成较严重地堵塞后,其阻力升高速率很快,对锅炉正常运行影响很大。部分锅炉在进行烟气脱硝改造时,未配套进行空预器改造,空预器出现NH4HSO4沉积后,很难通过蒸汽吹灰等措施清除,与飞灰形成较坚固的积灰,堵塞很快,空预器烟风阻力增加很快。多个电厂空预器堵塞后,换热元件无法采用空预器阻力大原因还有:高温段积粗灰粒子,水冲洗难以清除,表面堆积细灰粒子后引起严重堵塞;空预器换热元件散排、一般为高温段,导致空预器阻力显著升高;

(7) 减温器结构缺陷

近几年,减温器问题出现较多。主要有:相当部分锅炉减温器喷管直接焊接在减温器安装管座上,在减温器投停交替时产生很大的附加热应力,部分结构减温器附加热应力最大区域与结构上的应力集中区重合;部分锅炉减温器喷管采用悬臂结构,减温器蒸汽流动与减温水喷射附加的力,或者蒸汽流动产生的振动都会在喷管产生高频交变应力,悬臂结构容易在喷管根部产生较大的附加应力;部分减温器上游没有设内套筒,对喷管安装方向要求很高,一旦出现方向偏差,容易喷到减温器壁面;部分电厂检查发现二/三级减温器喷管与连接管座焊缝开裂,减温水流到安装管座与减温器内壁;部分减温器笛型管喷孔开孔偏向外侧,减温水射流容易射到减温器筒内壁。减温器因为结构缺陷在喷管根部产生裂纹和开裂的几率较大,是影响锅炉运行的安全隐患;喷管焊缝开裂后水沿连接管座内壁喷溅到减温器筒的内壁,对减温器筒体寿命影响很大。

一般处理方法是在检修时进行解检查,及早发现裂纹;在减温器更换时进行换型改造,选择更好地喷管与安装管座焊接方式。

(8)脱硝系统及其烟道漏风大

烟气脱硝改造后出现部分电厂锅炉SCR进出口烟温存在较大的差别,存在5~8℃的烟温降低,部分超过10℃。原因有SCR系统容器烟道表面保温效果较差、散热较大;SCR烟道焊接时存在未满焊与漏焊现象,烟道漏风大;进出口非金属膨胀节漏风较大,漏冷风导致烟温下降幅度过大。与烟气脱硝系统改造在机组运行中施工,施工时间短,个别机组保温在运行后施工等有关;非金属膨胀节存在质量问题,结构与材料存在缺陷导致漏风较大等。

处理措施:对SCR系统进行漏风测试,确认是否存在漏风;对烟风道进行漏风检查,特别是进出口非金属膨胀节。

(9) SCR系统进口烟温低

在环保部强调燃煤机组全负荷脱硝的状况下,SCR系统进口烟温偏低导致喷氨不能投运的问题突出。部分锅炉省煤器出口烟温低,在低负荷(50%)时烟温在300℃左右,对SCR系统催化剂活性影响较大。严重的引起脱硝系统不能投喷氨,或者运行中的脱硝系统跳闸,导致NOx排放不能满足环保要求;在低温区催化剂活性下降,要保证脱硝效率必须提高NH3:NOx摩尔比,使得NH3率升高;催化剂长期在低温喷氨运行对催化剂活性有影响,引起催化剂活性下降速度加快。

目前所有锅炉无法做到全负荷脱硝,包括燃气机组也存在这个问题。目前拟采取的措施有:采取零号高加,提高给水温度,减少省煤器吸热;采用烟气旁路烟道,提高SCR进口烟温;采取省煤器给水旁路,低负荷时减少省煤器吸热;省煤器给水再循环,减少省煤器吸热。采用低温催化剂,降低投运喷氨时的机组负荷率。

也有厂家介绍其催化剂可以适应全负荷脱硝,目前没有业绩

(10) 动调风机检修问题

大容量机组风机问题较多,2012年由风机原因直接引起跳机的有6次以上,由风机故障引起运行调整不当的有2次以上。原因有动调系统故障,如滑动调节杆轴承磨损、调节铜滑块磨损过快、密封圈老化漏油,静叶调节故障、轴承压盖螺栓断裂、风机配置不当以及风机进出隔绝门销轴断裂等。出现了风机失速跳闸、调节轴销断裂、风机断叶片、风机过流以及风机供电缺陷引起的跳闸;变频器缺陷引起风机到零转速,但不发停机信号,导致锅炉跳闸;其他如动叶调整机构卡涩、动叶调整滑块磨损过快、振动大,风机轴承保持架和滚珠开裂或磨损,风机轴承压盖螺栓断裂、转子掉落,引风机后导向叶片磨损,引风机静叶调节环连接轴晃动大等。

动叶可调风机的动调系统问题较多,如动叶调节轴承卡涩、调节铜滑块磨损引起动叶调节角度不一致,风机易出现失速与转子振动较大,液压油旋转油封组件密封法兰裂纹引起油箱油位快速下降,特别是反馈齿条连接轴承损坏发生较多,导致动叶无法调节,动叶迅速关死或迅速全开,2013年由此引起的异停3次以上。风机动作后调节逻辑不合理导致炉膛负压大幅度波动,增压风机跳闸等,引起锅炉MFT动作。动调系统问题主要原因是目前动调风机转子与动调系统无法进行现场检修,往往进行返厂检修;检修单位少、部分检修单位检修质量控制体系运行不正常,存在漏检漏修的问题。

风机问题的另一个方面是一次风机跳闸后RB动作成功率低。动调系统或变频器故障导致的一次风机跳闸事件较多,但一次风机跳闸后RB成功率较低,原因是一次风机跳闸后惰走时间短,出口隔绝门关闭时间较长,一次风压迅速降低,在隔绝风门关闭后一次风压迅速升高,一次风压大幅度波动引起带入炉膛的煤粉量大幅度波动,在机组一半负荷时导致炉膛负压大幅度波动。

目前在进行锅炉超低排放改造后,大部分联合风机采用双级动调轴流风机,动态风机检修一般采取转动部件与动调机构返厂检修的方式。加强动调风机检修质量过程控制和检修质量验收成为保证风机运行的可靠性的主要手段;部分电厂采取现场检修方式,动态风机运行可靠性较高。

对一次风机跳闸后RB动作成功率偏低问题处理,除加强一次风机及变频器维护,提高设备可靠性外;还有优化RB动作逻辑,减少一次风机隔离门的开关时间,优化投油助燃程序,及时投油助燃。

(11) 捞渣机缺陷

近年,锅炉辅机中捞渣机故障引起被迫停机较多。故障主要有:捞渣机浸水轮轴承磨损损坏,在更换浸水轮时引起停机;存在链条拉断、链条严重磨损以及刮板磨损、机头堆渣无法推动的问题,捞渣机防磨板缺失,上部回渣导致出力不足;个别锅炉捞渣机出力裕量偏小,存在链条拉断、主动齿轮轴销剪断等事件,在锅炉结焦时,大量焦渣掉落引起捞渣机出力不足,被迫停机处理。

捞渣机处理一般为:浸水轮轴承外置,避免渣水进入轴承;更换耐磨链条与耐磨刮板;完善防磨板以及更换驱动系统、增大捞渣机出力等。

您还有什么疑问请的登录陕西智沐环境科技有限公司官网进行详细资http://www.91zmst.co,公司地址:陕西省西安市经济技术开发区B4区迎宾大道138号豪盛花园B2103室,联系电话:公司电话:029-81314859


(渭南市2018年新型大气直燃模块锅炉厂家)
燃气低氮锅炉,全预混模块锅炉, 大气直燃模块锅炉_2018年新型 2018年新型大气直燃模块锅炉
更多精品
燃气低氮锅炉,全预混模块锅炉, 大气直燃模块锅炉_2018年新型 2018年新型大气直燃模块锅炉

燃气低氮锅炉,全预混模块锅炉, 大气直燃模块锅炉_2018年新型 2018年新型大气直燃模块锅炉

¥ 20,000.00
陕西大气直燃模块锅炉CWZS推荐

陕西大气直燃模块锅炉CWZS推荐

¥ 120,000.00
供应大气直燃锅炉西北独家研发

供应大气直燃锅炉西北独家研发

¥ 15,000.00
新型节能燃汽锅炉

新型节能燃汽锅炉

面议
厂家直销2018年款大气泡

厂家直销2018年款大气泡

¥ 1,000.00
供应新型直燃式蒸汽发生器

供应新型直燃式蒸汽发生器

面议
供应新型直燃式蒸发器

供应新型直燃式蒸发器

面议
供应新型直燃式节能蒸发器

供应新型直燃式节能蒸发器

面议
供应新型直燃式节能蒸汽发生器

供应新型直燃式节能蒸汽发生器

面议
节能模块锅 模块锅炉 燃气模块锅 模块锅炉品 模块燃气锅 铸铁模块锅 模块炉 方块锅炉 2018年新型大气直燃模块锅炉厂家 渭南市2018年新型大气直燃模块锅炉厂家
免费入驻
请选择分享的平台

微信

微博

QQ

取消分享
店铺 全部商品 电话咨询